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- Improving cross sections for MC simulation of electron transport

- Accurate track structures in microdosimetry and other applications in
medical physics

100 nm
—

- Need differential and total (integrated) cross sections (DCSs and TCSs)

- Present work: ionization of atomic inner shells by electron impact



lonization of atoms by electron impact

- Empirical, semi-empirical, and ab initio (first principles) calculations
- Current gold standard is DWBA (Bote and Salvat, 2008):

- Projectile wavefunctions distorted by target, not plane waves
- Valid from low E (~ 50 eV) to relativistic regime

- Thoroughly validated against experiment (Llovet et al, 2014)

- TCS data tabulated in NIST (all atoms; K, L, M shells)

- DCS data not tabulated

- Much more computationally expensive than PWBA

- Focus here on semi-empirical RBED model (Kim and Rudd, 2000)
- Yields both DCS and ICS and is very simple

Purpose: compare RBED with DWBA and assess limitations of the model



Relativistic binary-encounter-dipole (RBED) model

Model which combines Mdller cross section with Bethe equation
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- Kinetic energy of the projectile (7)
- Binding (B) & average kinetic (U) energies of the N target electrons
- Optical oscillator strength (00S), df(w)/dw

W is the kinetic energy of outgoing electron, w= W/B

N; is the effective number of electrons in the shell, N; = [° 4L dw



Optical Oscillator Strength models

1. RBEB model:

- If nothing is known about OOS, use the empirical function

(ﬂ) I
dw/gppes  (w+1)?
- This choice yields analytical DCS and TCS, hence the popularity of RBEB
2. Hydrogenic OOS:
- Fully analytical, non relativistic
- Obtained by setting @ = 0 in GOS expressions
- Can be applied to any Z by using Z.¢ according to Slater’s rules
3. Numerical (ab initio) OOS:
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Overview of results

- Self-consistent DHFS potential used to calculate numerical 00S

- Calculations done for Z spanning periodic table, and K, L, M (sub)shells
- Inner shell electrons: B = 200 eV

- Results shown here: 00Ss, DCSs and TCSs

- Emphasis: comparison of RBED (using the three 00S models) with DWBA
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Results: DCSs
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(a) Neon 1s, T = 3B (b) Argon 2p5 5, T =3B

(d) Argon 2p5 2, T = 10B

(c) Neon 1s, T =108



Results: TCSs, K shell

Agreement is good for the K-shell of low-Z elements
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Results: TCSs, K shell

But for high Z the relativistic asymptotic behaviour is wrong!
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Results: TCSs, L and M subshells
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Asymptotic mismatch

Relativistic Bethe equation for ionization in the high-energy limit:
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b; and c; are parameters determined from Fano plots

RBED high-energy asymptotic limit:
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Prefactors are different = RBED cannot reproduce the Bethe limit!
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Results: asymptotic behaviour

We can restore the PWBA prefactor to the distant (longitudinal and
transverse) part of RBED
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Can recover correct asymptotic limit, but intermediate region is worse
Highlights limitations of combining two disparate models semi-empirically
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